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LETTER TO THE EDITOR 
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$ Polish Academy of Science, 02468 Warsaw. Poland 
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Abstract. Simple opumization and growth models are studied numerically and also using 
analytic arguments to assess the importance of overhanging configurations of the interface and 
differences between quenched md annealed disorder. 

Interfaces with non-trivial geometry [ l ]  occur in a variety of situations, including domain 
walls in random magnets [1,2], fluid invasion through porous media [1,3], spreading on 
heterogeneous surfaces [4], membranes and vesicles in biology [5 ] ,  and epitaxial growth 
in surface science [1,6]. It has been common practice in the literature on interfaces to 
explicitly disallow overhangs or implicitly assume that overhanging configurations are 
irrelevant in determining the interfacial geometry. In this letter, we demonstrate using 
computer simulations and physical arguments that overhangs may indeed make a qualitative 
difference in the geometry in both equilibrium and non-equilibrium situations. In the latter 
context, we show that the geometry also depends on whether the randomness is annealed 
or quenched. 

Consider a square lattice of size L x L with bonds of random strength. Let the strength 
of each bond correspond to the time taken to traverse it. What is the optimal path, from 
left to right, that minimizes the total travel time? Let us simplify the problem by defining 
the total travel time to be equal to the value of the strongest bond belonging to the patht. 
Such an assumption would be expected to be valid when the bonds strengths are widely 
distributed [8]-this definition leads to an ultrametric structure in cost-space in which the 
minimum cost for travelling from A to B (an optimal path is chosen between A and B 
to minimize the cost), C ( A ,  B ) ,  satisfies the relation C ( A ,  B )  < Max(C(A, X ) ,  C(X, B ) )  
for any arbitrary X .  We have numerically studied the nature of the optimal path in two 
situations, first without any restrictions and second assuming overhanging configurations 
are not allowed (figure 1). The latter corresponds to paths in which there are no segments 
going from right to left. The calculations are carried out in a brute-force manner: bonds are 
selected in a rank-ordered manner starting from the highest strength bond and removed as 
long as a continuous path of bonds (of arbitrary geometry or of a restricted geometry with 
no overhangs) spanning from the left to right is present. Strikingly, the interfacial geometry 
changes from a self-similar fractal (with fractal dimension FC: 1.2) to a self-affine geometry 
(with the width of the interface defined as the RMS fluctuations about the mean position 

t For a detailed description of the optimization problem and its relationship to percolation, spin glasses and lanice 
animals, see [71. 
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Figure 1. Optimization problem: log-log plot of path leogth ( I )  in the UNeSViCted case and 
the root-mean-square lateral end-to-end distance (W = ,/&) of Ole path when the overhangs 
are not allowed versus the lattice size. The slope shown of he I curve is qual lo 6/5 and the 
results have been obtained by averaging over a number of realizations rangjng between 1000 
and 60000. The slopes. U, shown next to the W, data points correspond Lo d equal to 213 and 
0.63 for the solid and dotted lines, respectively. The staristics here xe based on between 15000 
and IOOOW realizations. The error bars are smaller thm the size of the points, 

scaling as La) on restricting the overhangs. We find numerically that a = 0.66 & 0.04 and 
is consistent with being in the universality class of the more general optimization problem 
(a = 2 / 3 )  in which the total cost of the path is taken to be the sum of the individual costs 
[2,9]. However, our data do not rule out a value of CY m 0.63 which would correspond to 
the universality class of the hull of a directed percolation cluster [lo]. 

We turn now to a growth model of non-interacting king spins in a random magnetic field 
on a square latticet. We demonstrate different behaviours depending on whether overhangs 
are permitted or not, both in the annealed and quenched situations. Each spin is subjected to 
a magnetic field that is randomly distributed-in the quenched case the fields are assigned 
at the start and do not change in time, whereas the annealed case corresponds to a fresh 
assignment of the field every time step, We start with a Rat interface at the bottom with +1 
(up) spins below the interface and -1 (down) spins above the interface. One then proceeds 
by flipping up the down spin that is at the interface and has the highest field strength. For 
the quenched case, this procedure is identical to a fluid-invasion process called invasion 
percolation [ 121 for which the interface is the hull of a percolation cluster and is self-similar 
[I31 with a fractal dimension of 4/3. 

We have studied the effect of disallowing or suppressing overhangs in two ways. When 
an overhang is created due to a sideward growth of a column. all sites with -1 spins in that 
column below the just flipped spin are also flipped so that the overhang is eliminated. This 
version (denoted as ballistic deposition in the figure caption) leads to a new universality class 

t Our model is a simpler version of that studied in I1 I ]  
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FIgure 2. Random-field king model-ballistic deposition: the dependence of the square width 
W, (mean square deviation from the average position of the interface) versus the mean height 
of the growing interface (the height is directly proportional to the time) for the quenched (Q) 
and annealed (A) cases for a range of lateral sizes (indicated on the figure). The annealed case 
has a growth exponent of 213 (as expected for wnventional ballistic aggregation) while the 
quenched w e  exhibits a more rapid growth (initial slope - 3. as obtained fmm the h t  [WO 

time steps). "he data were obmiained by averaging over Z O L Z W O  samples. 
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Figure 3. Random-field Ising model-ballistic deposition: lateral dependence of the saturated 
square width for the quenched (Q) and annealed (A) cases. The suaight lines have slopes 1.25 
and 1.0. respectively. The results were obtained by averaging over 5000 samples. 
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both in terms of the temporal behaviour and the spatial scaling of the saturated interface 
(roughness exponent = 0.63 f 0.01 and an initial growth exponent 2 1.5 for the quenched 
case), see figures 2 and 3. Such new behaviour is uncommon in two dimensions, in which a 
variety of seemingly different problems are mappable from one to the other and the Burgers 
equation [ l ] .  Our model is superficially similar Io one of Buldyrev era/ [I41 who employed 
a directed percolation-type approach to explain their measurements on the propagation of 
a wet front in paper. A key difference, however, is that unlike their approach, our model 
does not involve any tuning of the percolation concentration. Nevertheless, the value of the 
roughness exponent characterizing the spatial scaling of the saturated roughness is equal to 
that found in [141. 

The second version (denoted as the random deposition model in figure 4) restricts 
sideward growth, i.e. the possible growth sites are limited to those at the head of each 
column. The temporal growth is now linear in time (figure 4) and there is no saturation. 

RANDOM DEPOSITION 
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Figure 4. Random-field king model-mdom deposition: the temporal dependence of W,, for 
the quenched (Q) and annealed (A) versions of the random deposition model, The slopes of the 
lines at 2 and I, respectively. The enor bars are of ihe order of the size of the points. 

Table 1. Summary of the results obtained for models without overhangs. 

Model a B 
optimization 0.63-0.66 

Ouenched Annealed Quenched Annealed 

Ballistic deposition 0.63 0.5 -1.5 0.33 
Random deposition I 0.5 
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Qualitatively different behaviours are observed in the annealed versions of the above 
non-equilibrium models. The case where overhangs are allowed is identical to the Eden 
growth model [l]--one of the interface sites is selected randomly as a growth site. The 
interface in this case is self-affine with a roughness exponent of 1/2 and is in the Kardar, 
Parisi, Zhang (KPZ) universality class [ 151. If overhangs are disallowed, as in the first 
case described above, we get the ballistic deposition model [l]  which is still in the KPZ 
universality class. Thus, when the disorder is annealed, overhangs do not seem to play a 
role. However, if overhangs are suppressed by limiting the growth sites to the columns’ 
heads, the hivial random deposition model [ l ]  is obtained for which the roughness grows 
with time as t1I2 and does not saturate. Our results are summarized in table 1. Recently, KO 
and Seno [I61 have shown that the presence or restriction of overhangs leads to distinctly 
different classes of behaviour in ballistic deposition simulations. The different ways in 
which one may analyse the geometry of interfaces with overhanging configurations has 
been considered by Nolle et a1 [171. 

This work was supported by grants from NASA, NATO, NSF, ONR, KBN, I”, the 
Petroleum Research Fund administered by the American Chemical Society and the Cenee 
for Academic Computing at Penn State. 
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